Impaired bone marrow homing of cytokine-activated CD34+ cells in the NOD/SCID model.

نویسندگان

  • Forhad Ahmed
  • Stuart J Ings
  • Arnold R Pizzey
  • Michael P Blundell
  • Adrian J Thrasher
  • Hong T Ye
  • Anne Fahey
  • David C Linch
  • Kwee L Yong
چکیده

The reduced engraftment potential of hematopoietic stem/progenitor cells (HSPCs) after exposure to cytokines may be related to the impaired homing ability of actively cycling cells. We tested this hypothesis by quantifying the short-term homing of human adult CD34+ cells in nonobese diabetic/severe combined immunodeficient (NOD/SCID) animals. We show that the loss of engraftment ability of cytokine-activated CD34+ cells is associated with a reduction in homing of colony-forming cells (CFCs) to bone marrow (BM) at 24 hours after transplantation (from median 2.8% [range, 1.9%-6.1%] to 0.3% [0.0%-0.7%]; n = 3; P < .01), coincident with an increase in CFC accumulation in the lungs (P < .01). Impaired BM homing of cytokine-activated cells was not restored by using sorted cells in G0G1 or by inducing cell cycle arrest at the G1/S border. Blocking Fas ligation in vivo did not increase the BM homing of cultured cells. Finally, we tested cytokine combinations or culture conditions previously reported to restore the engraftment of cultured cells but did not find that any of these was able to reverse the changes in homing behavior of cytokine-exposed cells. We suggest that these changes in homing and, as a consequence, engraftment result from the increased migratory capacity of infused activated cells, leading to the loss of selectivity of the homing process.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rapid and efficient homing of human CD34(+)CD38(-/low)CXCR4(+) stem and progenitor cells to the bone marrow and spleen of NOD/SCID and NOD/SCID/B2m(null) mice.

Stem cell homing into the bone microenvironment is the first step in the initiation of marrow-derived blood cells. It is reported that human severe combined immunodeficient (SCID) repopulating cells home and accumulate rapidly, within a few hours, in the bone marrow and spleen of immunodeficient mice previously conditioned with total body irradiation. Primitive CD34(+)CD38(-/low)CXCR4(+) cells ...

متن کامل

Pattern of expression of CXCR4 and adhesion molecules by human CD34+ cells from different sources: role in homing efficiency in NOD/SCID mice.

BACKGROUND AND OBJECTIVES The role of adhesion molecules (AM) and CXCR4 in the homing of CD34+ cells to NOD/SCID marrow and spleen is not completely elucidated. In this work, we study the differences in the expression of CXCR4 and AM by human CD34+ cells from different sources and their impact on homing ability in NOD/SCID mice. DESIGN AND METHODS We used flow cytometry to analyze the express...

متن کامل

Mild hypoxia and human bone marrow mesenchymal stem cells synergistically enhance expansion and homing capacity of human cord blood CD34+ stem cells

Objective(s): Cord blood (CB) is known as a valuable source of hematopoietic stem cells (HSC). Identifying strategies that enhance expansion and maintain engraftment and homing capacity of HSCs can improve transplant efficiency. In this study, we examined different culture conditions on ex vivo expansion and homing capacity of CB-HSCs. Materials and Methods: In this study, 4-5 different units o...

متن کامل

Heterologous cells cooperate to augment stem cell migration, homing, and engraftment.

T-lymphocyte depletion of bone marrow grafts compromises engraftment, suggesting a facilitating mechanism provided by the T cells that has been shown to associate with CD8(+) but not CD4(+) T cells. Explanations for this phenomenon have focused on immune targeting of residual host cells or cytokine production. We provide evidence for an alternative mechanism based on cooperative effects on cell...

متن کامل

Human CD34(+)CXCR4(-) sorted cells harbor intracellular CXCR4, which can be functionally expressed and provide NOD/SCID repopulation.

Homing and repopulation of nonobese diabetic/severe combined immunodeficient (NOD/SCID) mice by enriched human CD34(+) stem cells from cord blood, bone marrow, or mobilized peripheral blood are dependent on stromal cell-derived factor 1 (SDF-1)/CXCR4 interactions. Recently, human cord and fetal blood CD34(+)CD38(-)CXCR4(-) and CXCR4(+) cells, sorted with neutralizing anti-CXCR4 monoclonal antib...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Blood

دوره 103 6  شماره 

صفحات  -

تاریخ انتشار 2004